ASSESSMENT OF MICRONUTRIENTS STATUS AND THEIR CORRELATION WITH SOME SOIL PROPERTIES IN SOILS OF VALSAD DISTRICT, GUJARAT

¹GOHIL, D. J.; ²*PATEL, K. H.; ³ITALIA, A. P.; ⁴PATEL. D. J.; ⁵THANKI, P. M. . AND ⁶PATEL, D. D.

DEPARTMENT OF SOIL SCIENCE COLLEGE OF AGRICULTURE NAVSARI AGRICULTURAL UNIVERSITY BHARUCH – 392 012, GUJARAT, INDIA

*EMAIL: khpatel@nau.in

- 1. PG Student, Dept. of Soil Science, N.M.College of Agriculture, NAU, Navsari
- 2. Associate Professor, Dept. of Soil Sci., College of Agriculture, NAU, Bharuch
- 3. Assistant Professor, Dept. of Soil Sci., College of Agriculture, NAU, Bharuch
- 4. PG Student, Dept. of Soil Science, N.M.College of Agriculture, NAU, Navsari
- 5. Associate Professor, College of Agriculture, NAU, Bharuch
- 6. Associate Professor, Dept. of Agronomy, College of Agriculture, NAU, Bharuch

ABSTRACT

Surface soil samples (0-21.5 cm) were collected from 120 locations from six talukas of Valsad district using GPS. The soil samples were analyzed for DTPA extractable micronutrient. The DTPA extractable micronutrients Fe, Zn, Mn and Cu content varied from 1.83 to 68.96 mg/kg, 0.14 to 2.01 mg/kg, 0.3 to 66.75 mg/kg and 0.14 to 8.90 mg/kg, respectively. Out of 120 surface soil samples, 9.17 per cent samples were deficient in DTPA-Fe, 30.00 per cent samples in DTPA-Zn, 14.17 per cent samples in DTPA-Mn and 1.67 per cent samples were deficient in DTPA-Cu content. DTPA-Fe (-0.33**), DTPA-Zn (-0.40**) and DTPA-Mn (-0.28**) showed significantly negative correlation with soil pH.

KEY WORDS: DTPA extractable micronutrient, GPS

INTRODUCTION

Soil fertility is one of the important factors controlling the crop yield. Soil related limitations affecting the productivity including nutritional disorders can be determined by evaluating the fertility status of the soils. Soil testing provides the information about the nutrient availability of soil upon which the fertilizer recommendation for maximizing crop yield made. Zinc (Zn), Copper (Cu), Manganese (Mn) and Iron (Fe) are essential micro-nutrients for plant growth. Through their involvement in various enzymes and other physiologically active molecules, these

micro-nutrients are important for gene expression, biosynthesis of proteins, nucleic acids, growth substances, chlorophyll and secondary metabolites, metabolism carbohydrates and lipids, stress tolerance, etc. (Singh, 2004, Rengel, 2007 and Gao et al., 2008). Original geologic substrate and subsequent geochemical and pedogenic regimes determine the total amounts of micro- nutrients in soils. However, total amount is rarely indicative of the availability by plant, because availability depends on soil pH, organic matter content, adsorptive surfaces and other physical, chemical and biological conditions in the rhizosphere.

ISSN: 2277-9663

Among the micro nutrients, zinc appears to be deficient in majority of the soils of Gujarat. The estimation, characterization and distribution of micronutrients important issues in the site-specific crop management, precision farming sustainable agriculture (Nayak et al., 2006). Keeping this in view, the present study was conducted to know the spatial variability for micronutrients (Fe, Zn, Mn, Cu) in Valsad district of Gujarat.

MATERIALS AND METHODS Study Area

The study area situated between the parallels of latitude 20°42'57" and the meridians of longitude 73°25'25" 72°39'41" in Valsad district of Gujarat. Topography is highly undulating and uneven with deep black alluvial, laterite and medium black soil

Collection of soil samples

A total of 120 representative GPSreferenced (Trimble Juno 3D) surface soil samples were randomly collected from farmers field covering six talukas (Valsad, Dharampur, Kaparada, Pardi, Umargam and Vapi) of Valsad district at 0-21.5 cm depth. The collected soil samples were air dried, sieved (2 mm sieve) and analyzed for DTPA extractable micronutrient (Fe, Mn, Zn and Cu) as per the standard method proposed by Lindsay and Norvell (1978) using Atomic Absorption Spectrophotometer.

Physico-chemical parameters like soil pH25 and EC25 and CaCO3 were determined as per standard methods described by Jackson (1973). Soil organic carbon was determined by rapid titration method (Walkley and Black, 1934). Free CaCO₃ was determined by rapid titration method as described by Piper (1950). The simple correlation among physico-chemical properties and available micronutrients were work out as per standard method given by Panse and Sukhatme (1985).

RESULTS AND DISCUSSION

The soils of Valsad district are medium acidic to strongly alkaline (pH 6.03 to 8.92), but free from salinity (EC 0.04 to 1.80 dS/m). The organic carbon content in soils varied from 0.10 to 1.99 per cent (mean 0.7. per cent). The free calcium carbonate content ranged from 0.07 to 6.47 per cent with an average value of 2.93 per cent (Table 1)

DTPA extractable micronutrients

DTPA-Fe content in soil varied from 1.83 to 68.96 mg/kg (mean value 18.55 mg/kg) (Table 2) and it was found deficient in 9.16 per cent samples, medium in 26.67 per cent and high in 64.17 per cent samples (Table 3). Correlation studied indicated that DTPApositively and significantly correlated with DTPA-Mn and DTPA-Zn, significantly and negatively but was correlated with pH (Table 4). This might be due to at high pH, availability of micronutrient may decrease because at high pH, DTPA-Fe get fixed in soil.

DTPA-Zn content of soil varied from 0.14 to 2.01 mg/kg with a mean value 0.87 mg/kg (Table 2) and was found to be deficient in 30.00 per cent samples, medium in 34.17 per cent and high in 35.83 per cent samples (Table 3). This wide variation in Zn content might be due to site specific Zn application. Correlation study showed that DTPA-Zn was positively and significantly correlated with DTPA-Fe, DTPA-Mn and DTPA-Cu, but significantly and negatively correlated with pH (Table 4).

The highest and lowest values of DTPA-Mn content in soil were 0.3 mg/kg and 66.75 mg/kg, respectively, with the mean value 19.03 mg/kg (Table 2). Out of the 120 soil samples, 14.17 per cent samples were deficient, 15.00 per cent were medium and 70.83 per cent samples were high in range (Table 3). Correlation study indicated DTPA-Zn positively was significantly correlated with DTPA-Fe and

DTPA-Zn, but significantly and negatively correlated with soil pH (Table 4).

DTPA-Cu in surface soils was grouped under low (1.67 %), medium (2.50 %) and high (95.83 %) category. The highest and lowest values were recorded 0.14 mg/kg and 8.90 mg/kg, respectively. Meena et al. (2012) also reported the similar finding.

Significant and positive correlation between available micronutrients and SOC were well documented by Sharma et al. (2003), Behera and Shukla (2013), Iratkar et al. (2014) and Singh et al. (2015). Further, significantly and negative correlations of all or some micronutrients with pH were also documented by Sharma et al. (2003), Iratkar et al. (2014) and Meena et al. (2012).

CONCLUSION

From the results and discussion, it can be seed that DTPA extractable micronutrients Fe, Zn, Mn and Cu content varied in the soils of Valsad districts from 1.83 to 68.96 mg/kg, 0.14 to 2.01 mg/kg, 0.3 to 66.75 mg/kg and 0.14 to 8.90 mg/kg, respectively. Out of 120 surface soil samples, 9.16 per cent samples were deficient in DTPA-Fe, 30.00 per cent samples in DTPA-Zn, 14.17 per cent samples in DTPA-Mn and 1.67 per cent samples were deficient in DTPA-Cu content. DTPA-Fe. DTPA-Zn and DTPA-Mn showed significantly negative correlation with soil pH.

REFERENCES

- Behera, S. and Shukla, A. K. (2013). Depthwise distribution of zinc, copper, manganese and iron in acid soils of India and their relationship with some soil properties. J. Indian Soc. Soil Sci., **61**(3): 244-252.
- Gao, S.; Yan, R.; Cao, M.; Yang, W.; Wang, S. and Chen, F. (2008). Effect of copper on growth, antioxidant enzymes and phenyalanine ammonialyse activities in Jatropha

- curcas L. seedling. Plant Soil Environ., 54: 117-122.
- Iratkar, A. G.; Giri, J. D.; Kadam, M. M.; Giri, J. N. and Dabhade, M. B. Distribution (2014).of **DTPA** extractable micronutrients and their relationship with soil properties in soil of Parsori watershed of Nagpur district of Maharashtra. An Asian J. Soil Sci., 9(2): 297-299.
- Jackson, M. L. (1973). Soil Chemical Analysis. Prentice-Hall of India, Private, Inc. New Delhi.
- Lindsay, N. L. and Norvell, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. America, 42: 421-428.
- Meena, R. H.; Giri, J. D.; Choudhary, S. R. and Shyampura, R. L. (2012). Distribution of available micronutrients as related to the soil characteristics in Malwa plateau region in southern Rajasthan. An Asian J. Soil Sci., 7(2): 206-210.
- Nayak, A. K.; Chyinchamalatpure, A. R.; Rao, G. G.; Khandelwal, M. K. and N. K. Tyagi, (2006).**Spatial** variability DTPAextractable of micronutrient in soils of Bara tract of Sardar Sarovar canal command in Gujarat state India. J. Indian Soc. Soil Sci., 42: 137-145.
- Panse, V. G. and Sukhatme, P. V. (1985). Statistical Methods for Agricultural Workers. ICAR, New Delhi, pp. 97-
- Piper, C. S. (1950). Soil and Plant Analysis, Academic Press, New York.
- Rengel, Z. (2007). Cycling of micronutrients in terrestrial ecosystems. In: Marschner, P. and Rengel, Z. (Ed.). Nutrient Cycling in Terrestrial Ecosystem. Springer-Verlag, Berlin, Heidelberg, pp. 93-121.
- Sharma, R. P.; Singh, M. and Sharma, J. P. Correlation (2003).studies

www.arkgroup.co.in **Page 206**

- micronutrients vis-à-vis soil properties in some soils of Nagpur district in semi-arid region of Rajasthan. *J. Indian Soc. Soil Sci.*, **51**(4): 522-527.
- Singh, M. V. (2004). Micronutrient deficiencies in Indian soils and field usable practices for their correction. IFA International Conference on Micronutrients, New Delhi, February, 23-24, 2004.
- Singh, Y. P.; Raghubanshi, B. P. S.; Tomar, R. S.; Verma, S. K. and Dubey, S. K. (2015). Soil fertility status and correlation of available macro and micronutrients in Chambal region of Madhya Pradesh. *J. Indian Soc. Soil Sci.*, **62**(4): 369-375.
- Walkley, A. and Black, I. A. (1934). An examination of the Kjeldal method for determining soil organic matter. *Soil Sci.*, **37**: 29-38.

www.arkgroup.co.in Page 207

Table 1: Range and mean values of soil properties and micronutrients

Soil Proeperties	Lowest	Highest	Mean	SD
pH	6.03	8.92	-	0.58
EC (dS/m)	0.04	1.80	0.27	0.21
Organic carbon (%)	0.10	1.99	0.70	0.42
CaCO ₃ (%)	0.07	6.47	2.93	1.46
DTPA-Fe (mg/kg)	1.83	68.96	18.55	14.97
DTPA-Zn (mg/kg)	0.14	2.01	0.87	0.51
DTPA-Mn (mg/kg)	0.30	66.75	19.04	16.48
DTPA-Cu (mg/kg)	0.14	8.90	2.11	1.46

Page 208 www.arkgroup.co.in

Table 2: Soil properties and micronutrient status in different talukas of Valsad district

Taluka	Number of Samples	pH _{1:2.5}	EC (dS/m)	Soil Organic Carbon (%)	CaCO ₃ (%)	DTPA-Fe (mg/kg)	DTPA-Zn (mg/kg)	DTPA-Mn (mg/kg)	DTPA-Cu (mg/kg)
Valsad	20	6.45-8.25 (7.40)	0.08- 0.70 (0.25)	0.20-1.99 (0.71)	0.07-5.50 (2.71)	2.51-18.44 (9.70)	0.23-1.24 (0.61)	0.35-23.24 (10.52)	0.25-6.15 (1.74)
Dharampur	20	6.03-8.08 (6.82)	0.08- 0.96 (0.22)	0.10-1.43 (0.83)	0.38-5.26 (2.95)	2.51-63.76 (32.08)	0.22-1.66 (1.05)	12.35-66.75 (31.93)	0.53-4.32 (1.74)
Kaparada	20	6.31-8.92 (7.16)	0.09- 0.92 (0.28)	0.12-1.71 (0.87)	0.53-6.71 (3.41)	3.80-68.96 (27.21)	0.14-2.01 (0.96)	0.33-65.68 (33.33)	0.14-4.31 (2.03)
Pardi	20	6.27-8.69 (7.28)	0.04- 0.35 (0.20)	0.20-1.46 (0.62)	0.38-4.80 (2.61)	2.30-21.63 (14.03)	0.14-1.90 (0.76)	3.28-25.26 (15.64)	0.50-3.99 (2.47)
Umargam	20	6.58-8.18 (7.56)	0.08- 0.46 (0.29)	0.18-1.22 (0.59)	0.60-5.30 (2.78)	3.14-21.82 (15.35)	0.33-1.27 (0.82)	0.30-18.63 (14.10)	0.57-3.32 (1.76)
Vapi	20	6.65-8.70 (7.45)	0.09- 1.80 (0.36)	0.15-1.49 (0.61)	0.35-5.10 (3.10)	1.83-24.89 (12.95)	0.15-2.01 (1.05)	0.93-20.54 (8.71)	0.16-8.90 (2.91)
Overall	120	6.03-8.92 (7.28)	0.04- 1.80 (0.27)	0.10-1.99 (0.70)	0.07-6.47 (2.93)	1.83-68.96 (18.55)	0.14-2.01 (0.87)	0.3-66.75 (19.03)	0.14-8.90 (2.10)

www.arkgroup.co.in **Page 209**

Table 3: Categorization of micronutrients of surface soils of Valsad district

Micronutrients in Surface Soils (ppm)													
	Number		DTPA-Fe]	DTPA-Zn		DTPA-Mn			DTPA-Cu		
Taluka	of Samples	L	M	Н	L	M	Н	L	M	Н	L	M	Н
Valsad	20	2 (10.0)	12 (60.0)	6 (30.0)	7 (35.0)	12 (60.0)	1 (5.0)	3 (15.0)	8 (40.0)	9 (45.0)	0 (0)	03 (15.0)	17 (85.0)
Dharampur	20	1 (5.0)	1 (5.0)	18 (90.0)	4 (20.0)	3 (15.0)	13 (65.0)	0 (0)	0 (0)	20 (100)	0 (0)	0 (0)	20 (100)
Kaprada	20	1 (5.0)	8 (40.0)	11 (55.0)	7 (35.0)	3 (15.0)	10 (50.0)	4 (20.0)	0 (0)	16 (80.0)	1 (5.0)	0 (0)	19 (95.0)
Pardi	20	2 (10.0)	5 (25.0)	13 (65.0)	11 (55.0)	3 (15.0)	6 (30.0)	2 (10.0)	3 (15.0)	15 (75.0)	0 (0)	0 (0)	20 (100)
Umargam	20	2 (10.0)	1 (5.0)	17 (85.0)	2 (10.0)	14 (70.0)	4 (20.0)	1 (5.0)	2 (10.0)	17 (85.0)	0 (0)	0 (0)	20 (100)
Vapi	20	3 (15.0)	5 (25.0)	12 (60.0)	5 (25.0)	6 (30.0)	9 (45.0)	7 (35.0)	5 (25.0)	8 (40.0)	1 (5.0)	0 (0)	19 (95.0)
Overall	120	11 (9.16)	32 (26.67)	77 (64.17)	36 (30.00)	41 (34.17)	43 (35.83)	17 (14.17)	18 (15.00)	85 (70.83)	2 (1.57)	3 (2.50)	115 (95.83)

L=Low, M=Medium, H=High; Values in bold no. expressed No. of villages and values in parenthesis () means per cent soils

www.arkgroup.co.in Page 210

Table 4: Simple correlation among different parameters of surface soils of Valsad district (n=120)

Soil Proeperties	pН	EC	SOC	CaCO ₃	Fe	Mn	Zn	Cu
pH	1.00							
EC (dS/m)	0.31**	1.00						
Organic carbon (%)	-0.13	-0.11	1.00					
CaCO ₃ (%)	0.01	0.08	0.12	1.00				
DTPA-Fe (mg/kg)	-0.33**	-0.11	0.01	0.15	1.00			
DTPA-Zn (mg/kg)	-0.40**	-0.03	0.04	0.12	0.81**	1.00		
DTPA-Mn (mg/kg)	-0.28**	0.01	-0.10	0.08	0.58**	0.42**	1.00	
DTPA-Cu (mg/kg)	-0.06	-0.07	0.16	0.01	-0.12	-0.09	0.20*	1.00

Note: ** and * denote significance at 1% and 5% levels of probability, respectively

[MS received: April 27, 2018] [MS accepted: May 19, 2018]

Page 211 www.arkgroup.co.in